Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.977
Filtrar
1.
Environ Monit Assess ; 196(5): 454, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622372

RESUMO

This work presents a sensitive and accurate analytical method for the determination of phenytoin at trace levels in domestic wastewater and synthetic urine samples by gas chromatography-mass spectrometry (GC-MS) after the metal sieve-linked double syringe liquid-phase microextraction (MSLDS-LPME) method. A metal sieve was produced in our laboratory in order to disperse water-immiscible extraction solvents into aqueous media. Univariate optimization studies for the selection of proper extraction solvent, extraction solvent volume, mixing cycle, and initial sample volume were carried out. Under the optimum MSLDS-LPME conditions, mass-based dynamic range, limit of quantitation (LOQ), limit of detection (LOD), and percent relative standard deviation (%RSD) for the lowest concentration in calibration plot were figured out to be 100.5-10964.2 µg kg-1, 150.6 µg kg-1, 45.2 µg kg-1, and 9.4%, respectively. Detection power was improved as 187.7-folds by the developed MSLDS-LPME-GC-MS system while enhancement in calibration sensitivity was recorded as 188.0-folds. In the final step of this study, the accuracy and applicability of the proposed system were tested by matrix matching calibration strategy. Percent recovery results for domestic wastewater and synthetic urine samples were calculated as 95.6-110.3% and 91.7-106.6%, respectively. These results proved the accuracy and applicability of the proposed preconcentration method, and the obtained analytical results showed the efficiency of the lab-made metal sieve apparatus.


Assuntos
Microextração em Fase Líquida , Poluentes Químicos da Água , Cromatografia Gasosa-Espectrometria de Massas/métodos , Águas Residuárias , Fenitoína/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Solventes/química , Água/análise , Microextração em Fase Líquida/métodos , Limite de Detecção
2.
Food Microbiol ; 121: 104515, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637077

RESUMO

Microbial thermal inactivation in low moisture foods is challenging due to enhanced thermal resistance of microbes and low thermal conductivity of food matrices. In this study, we leveraged the body of previous work on this topic to model key experimental features that determine microbial thermal inactivation in low moisture foods. We identified 27 studies which contained 782 mean D-values and developed linear mixed-effect models to assess the effect of microorganism type, matrix structure and composition, water activity, temperature, and inoculation and recovery methods on cell death kinetics. Intraclass correlation statistics (I2) and conditional R2 values of the linear mixed effects models were: E. coli (R2-0.91, I2-83%), fungi (R2-0.88, I2-85%), L. monocytogenes (R2-0.84, I2-75%), Salmonella (R2-0.69, I2-46%). Finally, global response surface models (RSM) were developed to further study the non-linear effect of aw and temperature on inactivation. The fit of these models varied by organisms from R2 0.88 (E. coli) to 0.35 (fungi). Further dividing the Salmonella data into individual RSM models based on matrix structure improved model fit to R2 0.90 (paste-like products) and 0.48 (powder-like products). This indicates a negative relationship between data diversity and model performance.


Assuntos
Escherichia coli , Microbiologia de Alimentos , Contagem de Colônia Microbiana , Viabilidade Microbiana , Salmonella/fisiologia , Água/análise , Temperatura Alta
3.
Environ Monit Assess ; 196(5): 420, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570413

RESUMO

Monitoring and protecting freshwater habitats are paramount for a sustainable water management perspective. This study investigated potentially toxic elements (PTEs) in the potamic water of the Anday Stream Basin (Türkiye), Black Sea Region, for a hydrological year (from May 2020 to April 2021). Among PTEs, the highest average values were recorded for sodium (Na) at 41.3 mg/L and the lowest for mercury (Hg) at 0.009 µg/L and noted under quality guidelines. The stream was found to be at the level of "Low Heavy Metal Pollution" and "Low Contamination" based on the ecotoxicological risk indices. The highest calculated hazard quotient (HQ) value of 1.21E-02 for Cd was noted in the children via the dermal pathway and the lowest of 6.91E-06 for Fe in adults via the ingestion pathway. Results revealed a higher hazard index (HI) value of 1.50E-02 for Cd to children and the lowest of 1.98E-05 for Fe to adults. As a result of applying agricultural risk indices, the stream showed sodium adsorption ratio values less than 6 and was found to be "Excellent" for agriculture. However, the sodium percentage values were less than 20 and found "Permissible" and the magnesium hazard > 50 and noted as "Unsuitable" for agriculture. Statistical analysis revealed that natural factors mainly attributed to PTE contamination of the Anday Stream Basin.


Assuntos
Mercúrio , Metais Pesados , Criança , Adulto , Humanos , Monitoramento Ambiental/métodos , Água/análise , Rios , Mar Negro , Turquia , Metais Pesados/análise , Mercúrio/análise , Medição de Risco , Sódio/análise , Cádmio/análise
4.
Ying Yong Sheng Tai Xue Bao ; 35(3): 587-596, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646745

RESUMO

To investigate the longitudinal variation patterns of sapwood, heartwood, bark and stem moisture content along the trunk of artificial Larix olgensis, we constructed mixed effect models of moisture content based on beta regression by combining the effects of sampling plot and sample trees. We used two sampling schemes to calibrate the model, without limiting the relative height (Scheme Ⅰ) and with a limiting height of less than 2 m (Scheme II). The results showed that sapwood and stem moisture content increased gradually along the trunk, heartwood moisture content decreased slightly and then increased along the trunk, and bark moisture content increased along the trunk and then levelled off before increasing. Relative height, height to crown base, stand area at breast height per hectare, age, and stand dominant height were main factors driving moisture content of L. olgensis. Scheme Ⅰ showed the stable prediction accuracy when randomly sampling moisture content measurements from 2-3 discs to calibrate the model, with the mean absolute percentage error (MAPE) of up to 7.2% for stem moisture content (randomly selected 2 discs), and the MAPE of up to 7.4%, 10.5% and 10.5% for sapwood, heartwood and bark moisture content (randomly selected 3 discs), respectively. Scheme Ⅱ was appropriate when sampling moisture content measurements from discs of 1.3 and 2 m height and the MAPE of sapwood, heartwood, bark and stem moisture content reached 7.8%, 11.0%, 10.4% and 7.1%, respectively. The prediction accuracies of all mixed effect beta regression models were better than the base model. The two-level mixed effect beta regression models, considering both plot effect and tree effect, would be suitable for predicting moisture content of each part of L. olgensis well.


Assuntos
Larix , Caules de Planta , Água , Larix/crescimento & desenvolvimento , Larix/química , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Água/análise , Água/química , Análise de Regressão , Madeira/química , Modelos Teóricos , Previsões
5.
Ying Yong Sheng Tai Xue Bao ; 35(3): 731-738, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646761

RESUMO

The construction of a yield loss evaluation index for the cold vortex type light-temperature-water composite adversity during rice flowering period in Northeast China is important for elucidating the impacts of cold vortex type composite disasters on rice yield loss in middle and high latitude areas. Moreover, it can provide meteorological support to ensure safe production of high-quality japonica rice in China and contribute to regional disaster reduction and efficiency improvement. By combining growth period data, meteorological data, and yield data, we delineated and constructed the composite stress occurrence index of cold vortex type light-temperature-water at the flowering stage of japonica. We analyzed the relationship between factors causing disasters and yield structure, as well as the relationship between different yield structures and yield by employing BP neural network method. We further dissected the processes involved in the causation of combined disasters. Based on the K-means clustering method and historical typical disaster years, we quantified the critical thresholds and disaster grades, and established an evaluation index and model for assessing yield loss caused by combined stress from cold vortex type light-temperature-water. Finally, we examined the spatial and temporal variations of low temperature, abundant rainfall, and reduced sunlight during the flowering period in the three provinces of Northeast China. Results showed that the critical thresholds for light, temperature, and water stress index during the flowering stage of mild, moderate, and severe cold vortex types were [0, 0.21), [0.21, 0.32), and [0.32, 0.64], respectively. The rates of yield loss were [0, 0.03), [0.03, 0.08), and [0.08, 0.096], respectively. Based on the verification results of a total of 751 samples in 11 random years from 1961 to 2020, the percentage of stations for which the production reduction grade, as calculated by the composite index developed in this study, aligning with the actual production reduction grade was 63.7%, consistently exceeding 58.0% annually. Moreover, the proportion of sites with a similarity or difference level of 1 stood at 88.3%, surpassing 85.0% in each year. The index could effectively assess the extent of rice yield loss caused by cold vortex disasters in Northeast China.


Assuntos
Temperatura Baixa , Flores , Oryza , Oryza/crescimento & desenvolvimento , China , Flores/crescimento & desenvolvimento , Estresse Fisiológico , Água/análise , Luz , Desastres
6.
Huan Jing Ke Xue ; 45(5): 3098-3106, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629570

RESUMO

In recent years, the environmental pollution of microplastics in Poyang Lake has received increasing attention. Baisha Lake of Poyang Lake was selected as the study area, and samples of water and sediments of Baisha Lake and the microplastics therein were collected, and the polymer types of microplastics were identified as polyethylene (PE), polyester (PET), polypropylene (PP), and polystyrene (PS) using Fourier infrared spectroscopy. We also analyzed the structural composition of bacterial communities in water, in sediments, and on microplastic surfaces using 16S high-throughput sequencing. The species richness and diversity of bacteria on the microplastic surfaces were lower than those in the surrounding water and sediments. The results of NMDS analysis showed that the bacterial community structures on the microplastic surfaces differed greatly from those in the surrounding sediments and water. The bacterial community composition in water and sediment differed from that on the microplastic surfaces, and the dominant bacterial phyla on the microplastic surfaces were Proteobacteria and Bacteroidota, and their relative abundance on the microplastic surfaces was higher than that in sediment. The relative abundance of Proteobacteria was higher than that in water. The relative abundances of Bacteroidota and Actinobacteriota were significantly lower than that of water. Massilia and Pseudomonas were the dominant genera on the microplastic surfaces, and their relative abundances were significantly higher than those in the surrounding water and sediments. BugBase phenotype prediction revealed that the relative abundance of contains mobile elements, biofilm formation, potential pathogenicity, and stress tolerance phenotypes of microplastic bacterial communities were significantly higher than those of the surrounding water and sediments. The results revealed that microplastics may have contributed to the spread of harmful bacteria, including pathogenic bacteria, and increased the potential pathogenicity of bacterial communities. Additionally, microplastic surface bacterial communities had higher phenotypes of mobile gene element content. Revealing the potential harm of microplastic pollution to wetland ecology at the micro level may provide a scientific reference for maintaining the ecological stability of wetlands.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Lagos/química , Monitoramento Ambiental , Água/análise , Bactérias/genética , Proteobactérias , China , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química
7.
Sci Rep ; 14(1): 8824, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627563

RESUMO

Understanding the physiological and biochemical responses of tree seedlings under extreme drought stress, along with recovery during rewatering, and potential intra-species differences, will allow us to more accurately predict forest responses under future climate change. Here, we selected seedlings from four provenances (AH (Anhui), JX (Jiangxi), HN (Hunan) and GX (Guangxi)) of Schima superba and carried out a simulated drought-rewatering experiment in a field-based rain-out shelter. Seedlings were progressively dried until they reached 50% and 88% loss of xylem hydraulic conductivity (PLC) (i.e. P50 and P88), respectively, before they were rehydrated and maintained at field capacity for 30 days. Leaf photosynthesis (Asat), water status, activity of superoxide dismutase (SOD), and proline (Pro) concentration were monitored and their associations were determined. Increasing drought significantly reduced Asat, relative water content (RWC) and SOD activity in all provenances, and Pro concentration was increased to improve water retention; all four provenances exhibited similar response patterns, associated with similar leaf ultrastructure at pre-drought. Upon rewatering, physiological and biochemical traits were restored to well-watered control values in P50-stressed seedlings. In P88-stressed seedlings, Pro was restored to control values, while SOD was not fully recovered. The recovery pattern differed partially among provenances. There was a progression of recovery following watering, with RWC firstly recovered, followed by SOD and Pro, and then Asat, but with significant associations among these traits. Collectively, the intra-specific differences of S. superba seedlings in recovery of physiology and biochemistry following rewatering highlight the need to consider variations within a given tree species coping with future more frequent drought stress.


Assuntos
Secas , Superóxido Dismutase , Prolina , China , Folhas de Planta/química , Fotossíntese/fisiologia , Plântula/fisiologia , Árvores , Água/análise
8.
Carbohydr Res ; 538: 109099, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574411

RESUMO

Ganoderma lucidum, widely used in traditional medicine, has several biological properties. Polysaccharides, mainly glucans, are known as one of its main bioactive compounds. Consequently, the achievement and chemical investigation of such molecules are of pharmaceutical interest. Herein, we obtained water-insoluble and water-soluble polysaccharides from G. lucidum by alkaline extraction. Fractionation process yielded three fractions (GLC-1, GLC-2, and GLC-3). All samples showed to be composed mainly of glucans. GLC-1 is a linear (1 â†’ 3)-linked ß-glucan; GLC-2 is a mixture of three different linear polysaccharides: (1 â†’ 3)-ß-glucan, (1 â†’ 3)-α-glucan, and (1 â†’ 4)-α-mannan; while GLC-3 is a branched ß-glucan with a (1 â†’ 4)-linked main chain, which is branched at O-3 or O-6 by (1 â†’ 3)- or (1 â†’ 6)-linked side chains. This research reports the variability of glucans in Ganoderma lucidum fruiting bodies and applicable methodologies to obtain such molecules. These polysaccharides can be further applied in biological studies aiming to investigate how their chemical differences may affect their biological properties.


Assuntos
Ascomicetos , Reishi , beta-Glucanas , Glucanos/química , Reishi/química , Polissacarídeos/química , beta-Glucanas/química , Carpóforos/química , Água/análise
9.
J Environ Manage ; 357: 120828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579473

RESUMO

Based on the concept of source separation of brown water (BW, human feces with flushing water) and yellow water (urine) in rural area, anaerobic co-digestion of BW with agricultural waste is a promising and effective method for rural waste treatment and resource recovery. The purpose of this study was to investigate the performance of different agricultural wastes (peanut straw (PST), peanut shell (PSH), swine wastewater acting as co-substrate for anaerobic co-digestion with BW, and the relative mechanisms were explored. When the mixed ratio was uniformly set as 1:1 (mass ratio, measured by volatile solid (VS)) and initial VS load as 20 g/L, the maximum cumulative methane production obtained by co-digestion (21 days) of BW and PST was 688 mL/g-VS, which performed better than the individual substrates (341 mL/g-VS), as well as the average of the sole BW and sole PST groups (531.2 mL/g-VS). The most impactful advantage was ascribed to the promotion of hydrolytic and acidogenic enzyme activities. The addition of PST also reduced the production of endogenous humus, which is difficult for biodegradation. Microbial community analysis showed that different co-substrates would affect the microbial community composition in the reactor. The relative abundance of hydrolytic acidogens in the PST and PSH co-digestion groups were higher than that in the SW co-digestion and sole BW groups, and the methanogenic archaea were dominated by the acetate-trophic Methanotrichaceae. The overall results suggest that anaerobic co-digestion is a feasible method, and co-digestion of BW and PST can improve methane production potential.


Assuntos
Reatores Biológicos , Água , Humanos , Animais , Suínos , Anaerobiose , Água/análise , Fezes , Digestão , Metano/análise
10.
PLoS One ; 19(4): e0299785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598442

RESUMO

Intense cultivation with narrow row spacing in wheat, a common practice in the Indo-Gangetic plains of South Asia, renders the crop more susceptible to lodging during physiological maturity. This susceptibility, compounded by the use of traditional crop cultivars, has led to a substantial decline in overall crop productivity. In response to these challenges, a two-year field study on the system of wheat intensification (SWI) was conducted. The study involved three different cultivation methods in horizontal plots and four wheat genotypes in vertical plots, organized in a strip plot design. Our results exhibited that adoption of SWI at 20 cm × 20 cm resulted in significantly higher intercellular CO2 concentration (5.9-6.3%), transpiration rate (13.2-15.8%), stomatal conductance (55-59%), net photosynthetic rate (126-160%), and photosynthetically active radiation (PAR) interception (1.6-25.2%) over the existing conventional method (plant geometry 22.5 cm × continuous plant to plant spacing) of wheat cultivation. The lodging resistance capacity of both the lower and upper 3rd nodes was significantly higher in the SWI compared to other cultivation methods. Among different genotypes, HD 2967 demonstrated the highest recorded value for lodging resistance capacity, followed by HD 2851, HD 3086, and HD 2894. In addition, adoption of the SWI at 20 cm × 20 cm enhanced crop grain yield by 36.9-41.6%, and biological yield by 27.5-29.8%. Significantly higher soil dehydrogenase activity (12.06 µg TPF g-1 soil hr-1), arylsulfatase activity (82.8 µg p-nitro phenol g-1 soil hr-1), alkaline phosphatase activity (3.11 n moles ethylene g-1 soil hr-1), total polysaccharides, soil microbial biomass carbon, and soil chlorophyll content were also noted under SWI over conventional method of the production. Further, increased root volumes, surface root density and higher NPK uptake were recorded under SWI at 20×20 cm in comparison to rest of the treatments. Among the tested wheat genotypes, HD-2967 and HD-3086 had demonstrated notable increases in grain and biological yields, as well as improvements in the photosynthetically active radiation (PAR) and chlorophyll content. Therefore, adoption of SWI at 20 cm ×20 cm (square planting) with cultivars HD 2967 might be the best strategy for enhancing crop productivity and resource-use efficiency under the similar wheat growing conditions of India and similar agro-ecotypes of the globe.


Assuntos
Solo , Triticum , Triticum/genética , Água/análise , Clorofila , Biomassa , Grão Comestível/química
11.
Huan Jing Ke Xue ; 45(3): 1539-1552, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471868

RESUMO

The global occurrences of lake eutrophication have led to algal bloom and the subsequent algal decomposition, releasing high amounts of algae-derived dissolved organic matter (DOM) into the lake water. Algae-derived DOM could regulate the quantity and composition of DOM in lake water and further impact the biogeochemical cycles of multiple elements. In this study, the dynamic changes in the quantity and quality of DOM during algal decomposition under different eutrophic scenarios (e.g., from oligotrophication to severe eutrophication) were monitored, and the corresponding environmental effects (e.g., microbial responses and greenhouse gas emissions) caused by algal decomposition were further explored. The results showed that algal decomposition significantly increased the DOM levels, bioavailability, and intensities of fluorescent components in the water. The total DOM levels gradually decreased, whereas the average molecular weight increased along the decomposition process. Furthermore, unsaturated hydrocarbon and aliphatic compounds were preferentially utilized by microorganisms during algal decomposition, and some refractory molecules (e.g., lignin, condensed hydrocarbons, and tannin with high O/C values) were synchronously generated, as evidenced by the results from ultra-high-resolution mass spectrometry. The dominant bacterial species during algal decomposition shifted from Proteobacteria (46%) to Bacteroidetes (42%). In addition, algae addition resulted in 1.2-5 times the emissions of CO2 and CH4 from water, and the emission rates could be well predicted by the optical index of a254 in water. This study provides comprehensive perspectives for understanding the environmental behaviors of aquatic DOM and further paves the ways for the mitigation of lake eutrophication.


Assuntos
Matéria Orgânica Dissolvida , Lagos , Lagos/química , Espectrometria de Massas , Bactérias , Água/análise , Eutrofização , China
12.
Huan Jing Ke Xue ; 45(2): 1004-1014, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471938

RESUMO

To understand the contamination characteristics and ecological risk of antibiotics in contaminated fields of pharmaceutical plants, samples of the surface soil, soil column, wastewater treatment process water, ground water, and residue dregs were collected from two typical antibiotic pharmaceutical plants in South and North China. A total of 87 commonly used antibiotics were quantified using ultrasound extraction-solid phase extraction and ultra-high performance liquid chromatography-mass spectrometry. The results showed that a total of 31 antibiotics of five classes were detected in all types of samples, and the maximum concentrations at each sampling point in the surface soil, soil column, residue dregs, wastewater treatment process water, and groundwater were 420 ng·g-1, 595 ng·g-1, 139 ng·g-1, 1 151 ng·L-1, and 6.65 ng·L-1, respectively. Most of the antibiotics were found in the surface soil, showing a decreasing trend with the depth of the soil column. The ecological risk assessment indicated that sulfamethazine, sulfaquinoxaline, tetracycline, chlorotetracycline, and D-sorbitol were at higher risk. Improving the efficiency of antibiotic removal from pharmaceutical wastewater and preventing production shop leaks are effective measures of controlling antibiotic contamination into and around fields in pharmaceutical plants.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Antibacterianos/análise , Poluentes Químicos da Água/análise , Águas Residuárias , Água/análise , China , Solo , Preparações Farmacêuticas
13.
Environ Sci Pollut Res Int ; 31(17): 25227-25237, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38468010

RESUMO

A quantitative method based on quick, easy, cheap, effective, rugged, and safe technique (QuEChERS) sample extraction and ultra-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) was evolved for the determination of 47 pesticide residues in fresh Mazafati date fruits from Bam City of Kerman Province, Iran. The recoveries for selected pesticides ranged from 88 to 110% with a relative standard deviation (RSD) of less than 20% at concentrations of 0.05 and 0.1 mg kg-1. The proposed method had a linear range from the limit of quantification (LOQ) to 1.00 mg kg-1, and the LOQ of the 47 pesticides was ≤ 0.005 mg kg-1. The coefficients of determination (R2) were more than 0.99. This technique was used on 12 fresh date fruits samples, three water samples, and three soil samples with three replications per sample. Forty-seven pesticide were detected collectively, but only diazinon was detected in the date fruit samples. The mean value of diazinon residues was 0.037 mg kg-1, and the concentration of diazinon in most samples was below the national maximum residue limit (MRL) for date fruit (0.05 mg kg-1). Among the pesticides measured, diazinon residues were also detected in the water samples, but not in the soil samples. The dietary intake assessment showed no health risk to humans from the consumption of fresh date fruit concerning the pesticides investigated.


Assuntos
Resíduos de Praguicidas , Praguicidas , Phoeniceae , Humanos , Resíduos de Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Água/análise , Diazinon/análise , Solo , Contaminação de Alimentos/análise , Verduras/química , Frutas/química , Praguicidas/análise
14.
Appl Environ Microbiol ; 90(4): e0206523, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38527003

RESUMO

Fungi are among the few organisms on the planet that can metabolize recalcitrant carbon (C) but are also known to access recently produced plant photosynthate. Therefore, improved quantification of growth and substrate utilization by different fungal ecotypes will help to define the rates and controls of fungal production, the cycling of soil organic matter, and thus the C storage and CO2 buffering capacity in soil ecosystems. This pure-culture study of fungal isolates combined a dual stable isotope probing (SIP) approach, together with rapid analysis by tandem pyrolysis-gas chromatography-isotope ratio mass spectrometry to determine the patterns of water-derived hydrogen (H) and inorganic C assimilated into lipid biomarkers of heterotrophic fungi as a function of C substrate. The water H assimilation factor (αW) and the inorganic C assimilation into C18:2 fatty acid isolated from five fungal species growing on glucose was lower (0.62% ± 0.01% and 4.7% ± 1.6%, respectively) than for species grown on glutamic acid (0.90% ± 0.02% and 7.4% ± 3.7%, respectively). Furthermore, the assimilation ratio (RIC/αW) for growth on glucose and glutamic acid can distinguish between these two metabolic modes. This dual-SIP assay thus delivers estimates of fungal activity and may help to delineate the predominant substrates that are respired among a matrix of compounds found in natural environments.IMPORTANCEFungal decomposers play important roles in food webs and nutrient cycling because they can feed on both labile and more recalcitrant forms of carbon. This study developed and applied a dual stable isotope assay (13C-dissolved inorganic carbon/2H) to improve the investigation of fungal activity in the environment. By determining the incorporation patterns of hydrogen and carbon into fungal lipids, this assay delivers estimates of fungal activity and the different metabolic pathways that they employ in ecological and environmental systems.


Assuntos
Bactérias , Carbono , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Ecossistema , Água/análise , Ácido Glutâmico/metabolismo , Ácidos Graxos/metabolismo , Solo , Hidrogênio/metabolismo , Glucose/metabolismo
15.
Environ Pollut ; 348: 123801, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38527581

RESUMO

Microplastics and other microscopic debris are a concern in the coastal environment but measurements in the water column and sediment are often problematic and rely on non-standardised and highly variable methodologies. To this end, we explore the potential of different species of temperate-cold marine macroalgae as passive biomonitors of anthropogenic microparticles at three contrasting locations in southwest England. Specifically, fronds from samples of fucoids and Ulva lactuca (n = 9 in total, and three from each location) have been sectioned and analysed directly under a microscope and anthropogenic microparticles counted and subsequently characterised for chemical composition. Microparticles were heterogeneously distributed throughout sections from the same sample. However, on a dry weight basis, combined microparticle concentrations for each sample ranged from about 7.5 g-1 to 110 g-1, and from about 0.2 cm-2 to 0.9 cm-2, and for a given species were higher in samples from a semi-enclosed harbour and urban beach than in samples from a protected beach facing the open sea. These values compare with published concentrations of microplastics and microfibres reported for the regional water column on the order of 0.1 m-3. Most particles were cellulosic (e.g., rayon) and petroleum-based (mainly polyester and polyethylene terephthalate) fibres but plastic fragments were also present on most samples. Glass retroreflective beads derived from road markings were also present at up to 18 g-1 on fucoids from the urban beach because of its proximity to a stormwater effluent. Most microparticles were adhered to the smooth parts of the macroalgal surface but some displayed wrapping around edges and creases or entrapment by appendages. The practical and environmental implications of macroalgae passively capturing significant quantities of anthropogenic microparticles are discussed.


Assuntos
60578 , Alga Marinha , Ulva , Poluentes Químicos da Água , Microplásticos/análise , Plásticos/análise , Monitoramento Biológico , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Água/análise
16.
Water Res ; 254: 121385, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452525

RESUMO

The Yangtze River is the third longest river in the world with more than 6300 km, covering 0.4 billion people. However, the aquatic ecosystem of the Yangtze River has been seriously damaged in the past decades due to a rapid development of economic and industrialization along the coast. In this study, we first established a dataset of fifty elements, including nine common heavy metals (HMs) and forty-one other elements, in the Yangtze River Basin through the collection of historical data from 2000 to 2020, and then analyzed their spatiotemporal distribution characteristics. The results indicated that the Three Gorges Reservoir (TGR), a region formed by the construction of the Three Gorges Dam (TGD), may act as a sink for these elements from upstream regions. The concentrations of seven elements in surface water and 13 elements in sediment obviously increased from the upstream region of the TGR to the TGR. In addition, ten elements in the surface water and 5 elements in the sediments clearly decreased, possibly because of the interception effects of the TGD. On a timescale, Cr obviously tended to migrate from the water phase to the sediment; Pb tended to migrate from the sediment to the water phase. In the ecological risk assessment, all common HMs in surface water were supposed to have negligible risks as protecting 90 % of aquatic organisms; Cd (210.2), Hg (58.0) and As (43.1) in sediment posed high and moderate ecological risks using the methodology of the potential ecological risk index. Furthermore, Hunan Province is at considerable risk according to the sum of the potential risk index (314.8) due to Cd pollution (66.8 %). These fundamental data and results will support follow-up control strategies for elements and policies related to aquatic ecosystem protection in the Yangtze River Basin.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Ecossistema , Rios , Cádmio/análise , Estudos Retrospectivos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Metais Pesados/análise , Medição de Risco , Água/análise , China
17.
Nature ; 627(8005): 905-914, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448589

RESUMO

A string of nucleotides confined within a protein capsid contains all the instructions necessary to make a functional virus particle, a virion. Although the structure of the protein capsid is known for many virus species1,2, the three-dimensional organization of viral genomes has mostly eluded experimental probes3,4. Here we report all-atom structural models of an HK97 virion5, including its entire 39,732 base pair genome, obtained through multiresolution simulations. Mimicking the action of a packaging motor6, the genome was gradually loaded into the capsid. The structure of the packaged capsid was then refined through simulations of increasing resolution, which produced a 26 million atom model of the complete virion, including water and ions confined within the capsid. DNA packaging occurs through a loop extrusion mechanism7 that produces globally different configurations of the packaged genome and gives each viral particle individual traits. Multiple microsecond-long all-atom simulations characterized the effect of the packaged genome on capsid structure, internal pressure, electrostatics and diffusion of water, ions and DNA, and revealed the structural imprints of the capsid onto the genome. Our approach can be generalized to obtain complete all-atom structural models of other virus species, thereby potentially revealing new drug targets at the genome-capsid interface.


Assuntos
Bacteriófagos , Capsídeo , DNA Viral , Genoma Viral , Vírion , Montagem de Vírus , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Difusão , DNA Viral/química , DNA Viral/genética , DNA Viral/metabolismo , Íons/análise , Íons/química , Íons/metabolismo , Eletricidade Estática , Vírion/química , Vírion/genética , Vírion/metabolismo , Montagem de Vírus/genética , Água/análise , Água/química , Água/metabolismo
18.
Int J Biol Macromol ; 264(Pt 2): 130770, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467230

RESUMO

Traditional adhesives easily release toxic gases during the preparation process or apply to wood composite products, which have adverse effects on the human body and the environment. Herein, an all-water-based high-performance wood adhesive is prepared using TEMPO-oxidized cellulose nanofiber (TOCNF), acrylamide (AM), and tannic acid (TA) through free radical polymerization. Different characteristics of the prepared composites, including morphology, injectability, and adhesion properties, have been investigated. Results showed that the TA/TOCNF/PAM composite has excellent injectability. The addition of TA can enhance the lap shear strength of the TA/TOCNF/PAM composites and with the increment of TA content, the lap shear strength gradually decreases. The formation of effective hydrogen bonds and Van der Waals interaction among the rich functional groups in the composite, lead to strong lap shear strength on different substrates. The composite with 5.0 g of AM, 5.0 g of the TOCNF suspension and 0.1 g TA possesses a high lap shear strength of 10.5 MPa on wood and 1.5 MPa on aluminium. Based on strong adhesion properties and excellent injectability, the TA/TOCNF/PAM composites have great potential in the furniture construction and building industries.


Assuntos
Celulose Oxidada , Nanofibras , Polifenóis , Humanos , Adesivos/química , Celulose/química , Nanofibras/química , Madeira/química , Água/análise , Celulose Oxidada/análise
19.
Food Chem ; 447: 139065, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38513485

RESUMO

The effect of vine leaves processing techniques on Azoxystrobin, Fenazaquin, and Indoxacarb residues was investigated. Residue extraction following field application of pesticides and leaf processing was carried out using the QuEChERS method, with analysis conducted by LC-MS/MS. In dry conservation, Azoxystrobin's half-life was estimated to exceed a year, Fenazaquin's was 18 days, and Indoxacarb's was 142 days. Azoxystrobin had a half-life of 261 days, Fenazaquin had a half-life of 9 days, and Indoxacarb's half-life exceeded a year in brine conservation. It is recommended to use dry conservation because it results in an average 60 % reduction in residue levels for the three pesticides. Boiling water significantly reduced pesticide residues (Azoxystrobin -40.3 %, Indoxacarb -22.4 %, and Fenazaquin -28.8 %). It is recommended to use boiling water for washing, as it shows an average removal rate of approximately 30 %. The health risk assessment indicated that consuming vine leaves posed no health risk for consumers, but overall exposure to residues must be considered.


Assuntos
Oxazinas , Resíduos de Praguicidas , Pirimidinas , Quinazolinas , Estrobilurinas , Espectrometria de Massas em Tandem , Cromatografia Líquida , Medição de Risco , Resíduos de Praguicidas/análise , Folhas de Planta/química , Água/análise
20.
Huan Jing Ke Xue ; 45(3): 1480-1491, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471863

RESUMO

Antibiotic pollution in the environment has a negative impact on ecosystem security. Taking the Oujiang River Basin as an example,high-performance liquid chromatography mass spectrometry(LC-MS)was used to detect the concentration of six classes of 35 antibiotics in the surface water of the southern Zhejiang River Basin. The concentration level and spatial distribution of antibiotics were analyzed,the risk of antibiotics to ecology and human health were assessed using relevant models,and the sources of antibiotics were discussed. The results showed that in 20 sampling sites,a total of four classes of 12 antibiotics were detected,including sulfonamides,quinolones,tetracyclines,and lincosamides. The total concentration was ND-1 018 ng·L-1. The highest detection rate was that of Lincomycin(90.48%),followed by that of sulfapyridine(38.10%). The three antibiotics with the highest average concentrations were ofloxacin(12.49 ng·L-1),Lincomycin(11.08 ng·L-1),and difloxacin(7.38 ng·L-1). Antibiotics in the basin showed mainly spotty pollution,which had large spatial differentiation. The average concentration of antibiotics in the upstream(54.39 ng·L-1)was higher than that mid-downstream(46.64 ng·L-1). The degree of antibiotic pollution from upstream to downstream showed a characteristic of being "sparse in the upstream and dense in the downstream. " This indicated that the concentration of antibiotics in the upstream was significantly different,whereas the pollution degree of antibiotics in the downstream was uniform. The upstream was mainly polluted by health,livestock,and poultry breeding wastewater emissions,and downstream pollution was mainly caused by densely populated activities and the rapid development of economy,trade,and industry. The ecological risk assessment results showed that the upstream site H6 had the highest risk quotient,ofloxacin and enrofloxacin had high risk levels, and lincomycin had a moderate risk level. Health risk assessment results showed that the Oujiang River surface water antibiotics posed no risk to human health.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Humanos , Antibacterianos/análise , Ecossistema , Monitoramento Ambiental/métodos , Ofloxacino/análise , Lincomicina , Medição de Risco , Água/análise , China , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA